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NEMO Genealogy
¥ NEMO was developed under a government contract at Texas Instruments and

Raytheon from 1993-1997

¥ Theory

¥ Roger Lake, Chris Bowen, Tim Boykin (UAH), GK

¥ Graphical User Interface

¥ Dan Blanks, GK

¥ Programming Approach, Philosophy, and Prototypes

¥ Bill Frensley (UTD), GK

¥ Coding

¥ Manhua Leng (UTD), Chenjing Fernando, Paul Sotirelis, Dejan
Jovanovic, Mukund Swaminathan (UTA), GK

¥ Experiments for verification

¥ Ted Moise, Alan Seabaugh, Tom Broekaert, Berinder Brar, Yung-
Chung Kao

¥ NEMO is based on non-equilibrium Green functions, in an implementation that
is novel.  The development of NEMO has benefited from the vast research on
resonant tunneling diodes that had been done before the project.
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Summary of NEMO Capabilities
¥ Interface / Users:

¥ FAST and dirty design.  interactive

¥ Comprehensive analysis (SLOW).  batch

¥ Physics

¥ Charging
¥ Semi-classical self-consistency, quantum self-consistency

¥ Scattering
¥ Phonons, alloy disorder and interface roughness (1band)

¥ Bandstructure
¥ 1, 2, 10 tight binding band models nearest and next nearest

neighbor coupling.

¥ Realistically long devices
¥ Novel boundary conditions

NEMO can trade off CPU time and memory against a variety of models.
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All of NEMO's Facets:
Formalism, Physics, and Technology
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Approximately 250,000 lines of code at time of delivery
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Objective:
¥ Automated device synthesis and analysis
using genetic algorithms.

¥ Material spectroscopy through genetic
algorithm analysis.

Justification:
¥ Empirical Design (usual process) is sub-
optimal. Complete design space search
is unfeasible.
=> Develop automated design tools.

Impact:
¥ Rapid nanotechnology device synthesis
and development.

¥ Generation of novel devices.
Approach:
¥ Augment NEMO to analyze individual
structures in parallel.

¥ Augment parallel genetic algorithm
package (PGApack) to optimize and
select desired structures in NEMO.

ÒGenetically EngineeredÓ Nanostructure Devices

PGAPACK
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Proposed system architecture.
Prototype is operable in batch mode.
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Basic Genetic Algorithm Development

¥ Genetic algorithm parameter optimization is based on:

¥ Survival of good parameter sets

¥ Evolution of new parameter sets

¥ Survival of a diverse population

¥ Optimization can be performed globally, rather than locally.
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Basic Evolution Operations

¥ Mutation may move parameters out
of their original parameter range

¥ E.g: original range [5,6,7,É100]
5 could be mutated to 4, or 3 É

¥ Mutation size may be random.

¥ Multiple parameters may be mutated
at the same step.

¥ Crossover maintains the original
parameters range.

¥ Crossover explores different
combinations of existing genes.

¥ Each set (Si) consists of several parameters (Pj)

¥ The parameters Pj can be of different kinds: real, integers, symbols, É.
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Development of a Fitness Function

¥ Eliminate series resistance effects

¥ Eliminate NDR oscillations (step-
like feature)
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¥ Fitness from of 6 error contributions:

¥ Peak and valley

¥ Slope at peak and valley

¥ Overall absolute and relative error
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First Simulation Results: Structural Analysis

¥ Employ parameterized non-parabolic
single band model with full quantum
charge self-consistency and
transverse momentum integration.

¥ Developed fitness function for
typical RTD I-V curves. Need to
shoot for peak position and
amplitude, slope at peak and relative
and absolute errors.

T1 T1T2 T2T3

N2

N1N1

D
op

in
g 

(c
m

- 3
)

En
er

gy
 (e

V
)

Length

1 1018

1 1015

3 1018

N2

¥ Allow genetic algorithm to vary 5
different structural parameters:

¥ 3 Thicknesses: well, barrier,
spacer

¥ 2 Dopings: low doped spacer,
unintentional doping in center
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First Simulation Results: Structural Analysis

¥ Analyzed two similar InGaAs/InAlAs structures :

¥ RTD 1: N1=1e18/cm3, D2=1e15/cm3, T1=7ml, T2=16ml, T3=16ml

¥ RTD 2: N1=1e18/cm3, D2=1e15/cm3, T1=20ml, T2=16ml, T3=16ml

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8

C
ur

re
nt

 D
en

si
ty

 (
kA

/c
m

2)

Applied Bias (V)

1e18_1e15_7_16_16

9e17_2e16_6_16_18

8e17_8e15_6_16_17

exp

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8

1e18_1e15_20_16_16
9e17_2e15_24_16_19

exp

C
ur

re
nt

 D
en

si
ty

 (
kA

/c
m

2)
Applied Bias (V)

(a) (b)



gekco High Performance Computing Group

.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.02 0.04 0.06 0.08 0.1

k0

k1

Wave vector a
p2( )

E
ne

rg
y 

(e
V

)

Resonance State Lowering due to 
Band Non-Parabolicity

Second diode turn-on at lower voltages.

Dispersion E(k)Dispersion E(k)

Ec
pk0 L

»

k1
2 p
L

»

L
Length

ResonatorResonator

parabolic
non-parabolic



gekco High Performance Computing Group

Wave Attenuation in Barriers

¥ Attenuation is smaller with coupled bands
¥ Tunneling probability increases

¥ Current increases
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Future Interest
¥ Analyze material parameter

influence on overall device
performance
-> material spectroscopy

¥ Implement general architecture such
that a variety of different simulation
tools can be plugged into an
optimization tool.

¥ Explore other optimization
algorithms, such as simulated
annealing or directive approaches
within the same framework.

-> scripting tools that can link
different tools

-> Tcl/Tk
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